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Piecewise linear emulator of the nonlinear Schrdinger equation and the resulting analytic
solutions for Bose-Einstein condensates
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We emulate the cubic terr® in the nonlinear Schidinger equation by a piecewise linear term, thus
reducing the problem to a set of uncoupled linear inhomogeneous differential equations. The resulting analytic
expressions constitute an excellent approximation to the exact solutions, as is explicitly shown in the case of
the kink, the vortex, and & function trap. Such a piecewise linear emulation can be used for any differential
equation where the only nonlinearity isfa® one. In particular, it can be used for the nonlinear Sdmger
equation in the presence of harmonic traps, giving analytic Bose-Einstein condensate solutions that reproduce
very accurately the numerically calculated ones in one, two, and three dimensions.
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I. THE PIECEWISE LINEAR EMULATION few instances, as shown in the various examples presented
below.

The discovery of Bose-Einstein condensates in vapors of We should note that the idea of solving nonlinear bound-
alkali-metal atoms has prompted an increased interest in th@y value problems by approximating terms of the differen-
cubic nonlinear Schitinger equation. Indeed, the Gross- tial equation and then patching local solutions at the knots
Pitaevskii equation, a highly successful three-dimensionahas been used for finding numerical solutions to a number of
mean field approximation that yields the macroscopic wavéoundary value problemfs]. Here, though, we focus on
function for the gaseous Bose-Einstein condensates, is justataining good analytic approximate solutions, rather than
cubic nonlinear Schidinger equation in a trapping potential. numerical ones.

Nonlinear Schrdinger equations model many natural phe- Our piecewise linear emulation of the nonlinear Sehro
nomena, ranging from light pulses in optical fibers to Bose-dinger equation involves then the replacement of the physi-
condensed photons. It is the trapping potential term, thougigally relevant piece of the cubit® curve with a correspond-
that has led to recent theoretical and mathematical investigang circumscribed polygonal line, as shown in Fig. 1.
tions. Most of these investigations have focused on harmoni€learly, if this polygon consists of very many line segments,
traps, which do not give analytic solutions, and have thereall of them tangent to the cubic curve, then the solution that
fore consisted of numerical studies. Analytic solutions havewill be obtained will be essentially the exact solution of the
been obtained for a finite square wgll], a double square nonlinear problem. In practice, though, we shall replace the
well [2], an infinite square wel[l3], and ad function poten-  cubic curve by three line segments tangent to the curve. The
tial [4]. The other potentials have been examined througtiesulting trilinear bicuspid curve is in fact a quite decent
variational and numerical methods. It would be desirableemulation of the¥* curve, as seen in Fig. 1.

therefore, to be able to obtain analytic solutions for these Indeed, let us suppose that we are trying to find the
other potentials, even approximate ones. Such solutionground state for a particular nonlinear Satirmer equation
would involve special functions in many cases, an unavoidin a certain trapping potential. Then we expect the wave
able complication arising even when solving the linearfunction to tend to zero at infinity and to reach a maximum
Schralinger equation. Nonetheless, they would provide arvalue ¥y at a point that can be defined to be the origin
invaluable tool for studying the corresponding nonlinear phe=0. We shall now approximate the curdie® with an emu-
nomena.

In this paper we present a most general method for finding 3
very good analytic approximate solutions to the cubic non- b g
linear Schrdinger equation. This method applies whenever 1

the nonlinearity in that equation is a purely cubic one. It is

most easily used when finding condensate ground states. It 0.8
can be easily generalized though to higher states. It is also

quite straightforward to generalize it so that it can handle 0
nonlinear terms of any form.

The basic idea is to emulate the nonlindat term by a
piecewise linear function o¥, thus replacing the nonlinear 0.2
Schralinger equation by a set of linear inhomogeneous dif-
ferential equations. These can be solved exactly, provided we
are able to find a partial solution. This is possible in quite a
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FIG. 1. The function¥?® and its piecewise linear emulatby,,.
The line segments are tangent to the curve at the pdint0, ¥
*Electronic address: stavrost@ucy.ac.cy =s¥,, and¥ =V, wheres=(\5—1)/2.
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lator curve consisting of three straight line segments. These \.IJO
line segments will be tangent to thie® curve at the points

V=0, ¥V=s¥, and¥=",. In other words, we shall be 0.7
replacing the cubic term with the emulator functidgy,, 0.6
where
0.5
0 if Osv=sV¥,, 0.4
fo={ 3PWAV—283W3 if W, <U<V,, (1 0.3
. 0.2
3WIW —2W3  if W,<PU<V,. 01
Heresis a number between 0 and 1, while the two cusps of 005 01 0.15 0.2 0 _25B
the emulator function occur aWw,=2s¥,/3 and V¥,
=2W¥,(1-5%/(3—3s?). FIG. 2. The maximum valuéP, of the wave function as a

The parametes is chosen so as to make the emulator asfunction of g in a § trapping potential. The continuous curve cor-
similar as possible to the original. We thus select the value ofesponds to the exact solution, while the dashed curve corresponds
s that minimizes the area between the cubic curve and tht® the piecewise linear emulation.
emulator polygonal line. This particular value turns out to be i
s=(V5—1)/2, in which case we ge¥,=2s¥,/3 and ¥, with th(_a emul:_;ttor ter.n‘fem of Eq. (1). We shall be solving
=45V /3. Our emulator function is then fully specified and the ordinary differential equation

is indeed a very good simulacrum of the cubic curve, as seen 42
in Fig. 1. It is this emulator functiofi,, of Eq. (1) that will —— 4+ 5(X)V —foy— Y =0, (6)
be used in all of the following examples. dx?

the components of which are simply linear inhomogeneous

ordinary differential equations. Each component must be
We shall demonstrate the validity of our piecewise linearsolved in the corresponding interval, of course. Let us define

emulation by looking at various examples. We start by solvthe positive valuex; and x,, which are such thaw (x;)

ing the nonlinear Schdinger equation for the case of & =W¥,=2sV/3, V(x,)=V¥,=4sV¥,/3, and ¥(0)=V,.

II. AONE-DIMENSIONAL & FUNCTION TRAP

function trap: Then fo, is equal to zero whenx|=x;, to 332\P§\If
—25*W3 whenx,<|x|<x,, and to 3F3¥—2¥3 when 0
h? d?w . <|x|<x,.
2m gy NSV gl V[TV =EV, 2) We solve Eq.(6) in each of the three intervals of the

positivex axis, i.e.[0X,], [X2,X;1], and[X;,%), making use
where N and g are positive. We measur® in units of  Of the fact that it suffices to find the ground state wave func-

(M%) 2m/g andx in units of 42/(2m\), defining also the tion just for non-negative values a&f since¥ is even. Our
positive parameteB= —#2E(2m\2)~ L. The resulting di- Solution involves nine unknown constants, namaly,, X, ,

mensionless equation is X,, and six constants of integratigtwo in each of the three
regions. We shall impose the conditions that the wave func-
d2w tion and its derivative be continuousat andx, (four con-
o +8(x)¥ —¥3-p¥=0. (3  ditiong), that the wave function have the aforementioned ap-

propriate values at the origin and at the poirisand x,
(three conditiong that the derivative of the wave function
have the appropriate discontinuity at the origane condi-
tion), and that the wave function vanish at infiniigne con-
dition). There are thus nine equations and nine unknown con-
stants. It is then quite straightforward to determine fully the
solution of Eq.(6). We find from this piecewise linear emu-
tI%ltion that the maximum valu# , of the wave function?’ is

Here B is an externally given parameter. It can be fully de-
termined if we require the particle number, which is propor-
tional to the integral of the square ¥f, to have a particular
assigned value.

It is quite straightforward to find the ground state for this
dimensionless equation. The exact ground state is found
be

30v5+63
\Ifz@cosec?{rlxh/ﬁﬂinh‘%/%), (4) Vo=V(1-4p) =0.742y1-48. (7)

236
whereby the maximum valu#, of the wave function? is  This approximate result is very close to the exact result of
Eq. (5), as can be seen in Fig. 2, where the maximum value
Vo=+(1—-4B)/2=0.70n/1-4p. (5) of the wave function is plotted as a function of the parameter

Let us now see if our emulator can reproduce this ground The solution obtained from the piecewise linear emulation
state solution. Thus we shall replace the cubic term in(Bq. is
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((W,e” B if x <,

2% 3 2% 3 . .
—_ 2 +| Wy— % coshk(x—xo) ]+ (I'd/K)sinfk(x—X5)] if Xo=<X=<Xq, ®
2W3 _ _
?ercosr[d(x—xz)]vLF sinfd(x—x,)] if 0=x=X,,
\
|
where d?=3W3+ B, k?=3s>¥3+ 8, y=W,—(2¥3/d?), We shall examine, in particular, the solution of the differ-
and I'=—2sW¥,k?+3p/(3d). The pointsx; andx, are  ential equation
given by the relations
v V3+¥=0 (11
dx? ’

k [ k2+
sinr[k(xl—xz)]:sz(—'g—\/SﬁJrk2 (9)

B\ VB

subject to the boundary conditiofis( =)= *=1. The kink
that joins two equivalent homogeneous solutions of Ed),

and the solutions 1 and-1, can be found exactly:

¥ =tanh(x//2). (12)

sinh(dx,) = [yWo/(2d)+T (¥o—(2W3/d?))].

2 2
y T Let us see if we can reproduce this solution through a piece-

(10 \ise linear emulation. We may confine our attention to the

Fi 3 sh h . f btained f h positive x axis, since the kink will be an odd function. Thus
igure 3 shows the expression o K@), obtained from the the kink will have the value zero at=0 and 1 at infinity. We
piecewise linear emulation, as well as the exact ground sta

- - 3 .
solution given by Eq(4). We see that the two curves coin- Emulate Eq(L1), then, by replacing the cub™ term with

cide. Thus the piecewise linear emulation does indeed su the termfep, of Eq. (1), the maximum¥o of the wave func-

ceed in providing us with a very accurate analytic a roxi-%-On being 1 in the present case. Thus the emulators
P 9 y y PP going to be the solution of

mation for the wave function of the ground state in the
nonlinear Schrdinger equation with & function trapping

potential. d2w
F_fem—i_quoi (13
X
I1l. THE KINK

.- . .. where the emulator functiofy, in this case is
Let us now demonstrate the validity of the piecewise lin- fem

ear emulation in a different context, namely, the domain wall

between two equivalent phases. This domain wall is usually 0 if 0sx=xq,
called a kink soliton. fom=1 37W—25% if x;<x<X,, (14)
N 3v—-2 if x,=x,
1 where the points; and x, are defined by the expressions
¥ (x4)=2s/3 and ¥(x,)=4s/3, s being always equal to
0.8 (\/5—1)/2. There are eight unknown constants, namely,
X5, and the six integration constants, two constants in each of
0.6 the three regions that partition the positixeaxis. These
0 4 constants will be determined by the eight boundary condi-
: tions that have to be imposed. Indeed, we shall impose the
0.2 conditions that the wave function and its derivative be con-
tinuous atx; andx, (four conditiong, that the wave function
take the values 0,23, and 4/3, at the points 0x,;, andx,,

X i " X
2 4 6 8§ 10 12 14 respectively(three conditions and that the wave function

FIG. 3. The wave function for the ground state isdunction ~ take the value 1 at infinityone condition. There are thus
trap, for 8=1/8. The continuous line shows the exact result, whileeight equations and eight unknown constants. It is now a
the dashed line shows the result given by the piecewise linear emwstraightforward matter to solve exactly the resulting equa-
lation. tions, obtaining
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( 4s 2(xp—X) ;
1+ ?—l etz if X,=<X,
S3
P = —1.5312%2"9P— 0,880 2P if x;<x=<X,, (15)
3s?-1
2s sinx 0
— =x<
[ 3 sinx, ! XSX
|
wherep=/3s?—1, andx, andx, turn out to be 0.5912 and d2y 1dy 1
1.5574, respectively. g, 2V S+ y=0. (17
Figure 4 shows the expression for Efj5), obtained from dp= P CEP p

the piecewise linear emulation, as well as the exact kink ] ] ) ) ]
solution given by Eq(12). We see that the two curves coin- We cannot obtain an exact analytic solution of this equation.

cide. Thus the piecewise linear emulation does indeed sudt i in this case then that our method may prove to be quite

ceed in providing us with a very accurate analytic approxi-usef“L .
mation for the kink solution of Eq(11). We note first thaty can take values between 0 @t 0
and 1 at infinity. So we shall replace the cubic tegfin Eq.
IV THE VORTEX (17) with the emulator term

The previous two cases could be solved analytically, thus

making the piecewise linear emulation superfluous. Most 0 if Osps=py,
nonlinear Schrdinger problems cannot be solved analyti- ) 3
cally though, and it is in these cases that our method may fem=q 38°9—2s° if pi=<p=p,, (18

prove to be invaluable.
An example of such a nonlinear problem that can be

solved only numerically is the problem of a single vortex in i )
a superfluid medium. The numerical solution of this problemWhereép1 andp, are defined by the equationf(p,) =2s/3
is known [6]. The corresponding nonlinear Séioger and w(pz)_= 4s/3. Itis then a s_tralghtf_orward matter to soIV(_e
equation is a two-dimensional differential equation: t_he res_ultlng equations a_nalytlcglly, since we are dealing Wlth
linear inhomogeneous differential equations. There are eight
unknown constants, namely,;, p,, and six constants of
integration, two in each of the three regions. The conditions
that must be imposed arise from the continuity of the wave
function and its derivative ai; andp, (four conditions$, as
For a vortex solution with a single quantum of circulatidn,  well as from the fact thats takes the values 0,523, 4s/3,
takes the formy(p)e'?, wherep is the two-dimensional ra- and 1 at 0,p;, p,, and infinity, respectivelyfour condi-
dius and¢ is the azimuthal angle. If we measure the wavetions). Thus all the unknown constants can be found, leading
function in units of \a/b and the radius in units of to an expression that involves Bessel functions and Sttuve
J#?I(2ma), we obtain the ordinary differential equation  functions:

3y—2 if pry=p,

hZ
— —V2¥+b|¥|?¥—a¥=0. (16)
2m

S 14(p\2)~ Ly(py/2)]-0.641326K(p\2) i py=p,

v= —ws3p2L4(p/p)+3.620 77 ,(p/p) —0.002 632 4K 4 (p/p) if p1=<p=<p,, (19

1.221153,(p) if 0<p=<p,

where p=(3+/5)/2, p;=0.720578, angh,=1.9686. We R S , ,

can now use this approximation for the wave function of the fo m dp(pyy *+§lp+pd 12— py”). (20)
vortex in order to calculate its energy. This energy is given

by the expression If we use the approximation of E§L9) in order to calculate
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1 2 ] 6 g 10 12P
FIG. 4. The kink solution of Eq(11). The continuous line FIG. 5. The vortex solution of Eq(17). The continuous line
shows the exact result of E4L2), while the dashed line shows the Shows the exact numerical result, while the dashed line shows the
result given by the piecewise linear emulation. result of Eq.(19) that was given by the piecewise linear emulation.
this energy, we shall findr In(1.47R) — wR?/4. The energy d®¥ n—-1dv¥ 5 3
obtained by solving the nonlinear Scdinger equatior{17) arz gy Y- YHEY=0, (22

numerically [6] is identical to this, except for the number
1.47 being replaced by the number 1.46. The agreement be- . . .
tween the two expressions is consequently excellent. Thi%heren is the dimension of the space and hence may take
can also be seen in the plot of Fig. 5, where the wave funcin€ values 1, 2, or 3. _ . .

tion found by numerically solving the correct EA.7) coin- We now .proceed to_thg piecewise linear emulauqn of Eq.
cides perfectly with the wave function of E6L9) that was ~ (22): replacing the cubiel® term by the emulatof., given
obtained through the piecewise linear emulation. We condY Eq_. (1). We then have to solve the linear inhomogeneous
clude then that our emulation produces an excellent analyti§duations

simulacrum of the numerical solution.
dzw+n_1dq' 2y —f_ _+EW=0 23
T g —0
V. THE n-DIMENSIONAL ISOTROPIC dr2 roodr em 23

HARMONIC OSCILLATOR

In all the cases that were examined so far it was a rela¥Ve define the points, andr,, so thatW(ry)=2s¥/3
tively straightforward matter to solve exactly the linear inho-=¥1, W(rp)=4s¥o/3=¥,, and ¥(0)=¥,, the param-
mogeneous differential equations that resulted from thétershaving its standard value=(y5—1)/2. Then Eq(23)
piecewise linear emulation. It will not always be easy to doinvolves six unknown constants of integratidmo in each
that though, because there may be cases where a particuRife of the three regiopsand three additional unknown pa-
solution is hard to find. An additional difficulty will arise rameters ¥, ry, andr,). These constants will be deter-
from the fact that the general solutions of the correspondingnined by the nine boundary conditions. Four conditions arise
homogeneous differential equations may involve compli-from the continuity of the wave function and its derivative at
cated special functions, in which case some symbolic comt: andr,, two conditions arise at=0 from the fact that the
putations may be necessary. In all cases, though, our emul#ave function acquires the maximum valig, there, one
tion will provide us with a very good approximation for the condition arises from the fact thdt vanishes at infinity, and
functional form of the exact solution. the last two conditions arise from the relationss(r,)

A good example of a nontrivial application of our method =2s¥ /3 andW (r,) =4sW¥ /3.
is the n-dimensional nonlinear Schidimger equation in the The solution of Eq.(23) in the regionr,<r is quite
presence of an isotropic harmonic trapping potential. This istraightforward and is expressed in terms of the hypergeo-
the case relevant to the Bose-Einstein condensates. The wawetric functionU,
functions for these condensates have been found only nu-

U((n—E)/4ni2r?)

merically[7—9]. We shall use the piecewise linear emulation 2sVy 2
in order to find analytic expressions for these solutions. = Te('l_r )2 N (24)
We shall be looking at the nonlinear Schrodinger equation U((n—E)/4n/2r7)
h? 1 having made use of the boundary condition at infinity and of

2 2,2 2\ —
- ﬁv v+ 7 mae T V+g|W[TW=EV, 2D the known value¥ (r,). The solutions in the other two re-

gions are quite nontrivial, since a particular solution is not
whereg is positive(repulsive case We shall concentrate on immediately obvious.
real ground state condensates and we shall meaBune Let us begin with the inner region &r<r,), where the
units of VA w/(2g), r in units of y/(mw), andE in units of ~ wave function takes values betwees¥,/3 and¥,. The
hwl/2. Then Eq.(21) reduces to the dimensionless equation equation that has to be solved here is
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dw  n-tdv 29 2y 4 2wi=0 25 ¥
dr2+ r W_r - + 0 Y ( )

3
with h?2=3W2—E. The solutions of the homogeneous equa- 2.5
tion are expressed in terms of hypergeometric functions: 2
e "2 F,((n+h?)/4n/2,r2) ande 72U ((n+h2)/4,n/2,r2). 5
However, the hypergeometri¢ piece diverges at=0 when
n=2 or 3, and gives a finite nonzero slope there winen 1
=1, making it impossible fol to have its maximum there. 0.5
The U piece must be excluded therefore, since the ground

state has to be even about the origin. We are left with the 1 2 3 4 5 r
other hypergeometric piece, the piece containing the so

called Kummer function. Thus we know the general solution. FIG. 6. The solution of Eq22) for n=1 andE=10. The con-
We need, however, a particular solution of the full inho- tinuous line shows the exact numerical result, while the dashed line

mogeneous equation in order to obtain the full analytic Solu_shows the result that is given by the piecewise linear emulation.

tion. Such a solution is not immediately obvious. We can find 2 _2 ) 2

it, though, if we concentrate our attention on the nonlinear¥ = ¢mia(r)+Ae "' F((n+]9)/4n/2r9)+Be " “U((n
region, where we expect largé, values. Indeed, let us de- 2 2

fine the variablev=1/(r?+h?). For large values o¥, this Fi9/an/2r%). (31)
is small everywhere and we shall be able to write dow
convergent series in terms of this variable. In fact, &)

Mhe constanté andB can be found by requiring to take
the appropriate values at the pointg and r,. Hence A

can be rewritten in the form —A,/C andB=B, /C, where
d?w dw 2 ,
(4w ah2w)—— +[(8 = 2n)w*~ 8w =W Aq =€ — dia(12) + (4513 Wo]U(n+?)/4n/2r7)
w

— P = iolr1) + (2813) ¥ JU((n+)/4n12r),
(32

+2w¥3=0. (26)

The solution of this equation for smail is
2 .
bin=2T W+ (8—2n)w3—8h2W ]+ O(W). (27) By=€"1 — dria(r1) +(25/3) W], F1((n+j2)/4,n/2,r3)
n .
BRI 2 2
This relation indicates that for small, when we may keep €' = dmid(r2) +(4s/3)Wol) 1F1((n+ ) /4n/2r7),
only the term of ordew, we have to have[’émE, sinceV (33
acquires the valud at the origin.
Equation (27) is a partial solution of Eq(25), the full ~ and

solution of which now takes the form _ 5 . )
C=Fi(n+]d)/an/2rHU((n+j?)/an/2r%)

4sW¥, i2 2 :2 2
W= ¢in(N)+| —3—~ din(r2) — 1Fa((n+]9)74n2rPU((n+])/4ni2r3). (34)
2 2 Equations(24), (28), and (31) describe fully the solution
Xe(rgfrz)/z 1Fa((n+h )/4,n/2,r2)' (29) given by the piecewise linear emulation. The remaining un-
1F1((n+h?)/4ni2r?) known quantities I(;, r,, and¥,) will be determined by

o ) ) requiring that the derivative of the wave function be continu-
We can use a similar approach for the regigssr=<r, in  oys atr, andr,, and that¥ (0)=W¥,. Of course, our solu-

the middle. The equation that must be solved here is tion will be a function of the input parameté, which is
5 determined by the total number of particles.
¥ n-1d¥ = 33 Figure 6 shows a comparison of the numerically obtained
—t —— V-V +25°P5=0, (29 : . . . e
dr? rodr solution to the solution given by the piecewise linear emula-

tion in one dimensionr{=1), for E=10, a value of that is
wherej 2:332\pg_ E. For large¥, an approximate partial large enough to ensure the validity of the partial solutions of
solution can be obtained in the same manner as the one usE8- (27) and Eq.(30). We see that our approximation repro-

in the inner region. This partial solution is duces very closely the numerically obtained exact result.
Figure 7 shows a comparison of the numerically obtained
bmia= 252V y+(8—2n)y3—8j2y*], (300  solution to the solution given by the piecewise linear emula-

tion in two dimensionsif=2), for E=10. We see that the
wherey=1/(r?+j2). The full solution in this region turns approximation reproduces very closely the numerically ob-
out to be tained exact result.

066701-6



PIECEWISE LINEAR EMULATOR OF THE NONLINEAR . .. PHYSICAL REVIEW B7, 066701 (2003

b b
3 3
2.5 2.5
2 2
1.5 1.5
1 1
0.5 0.5
1 2 3 4 5 6 I 5 6 I
FIG. 7. The solution of Eq(22) for n=2 andE=10. The con- FIG. 8. The solution of Eq(22) for n=3 andE=10. The con-

tinuous line shows the exact numerical result, while the dashed linénuous line shows the exact numerical result, while the dashed line
shows the result that is given by the piecewise linear emulation. shows the result from the piecewise linear emulation.

ﬁatisfactory simulacrum of the graph of the original nonlin-
ear terms. This will always be the case if the emulator con-
sists of enough linear segments. With the cubic term three
segments are quite sufficient. More complicated nonlinear
¥erms will need an emulator with more than two cusps and
more than three pieces. Furthermore, while our approximate
scheme should work quite well for static situations, it may
VI. CONCLUSIONS not work in the case of nonequilibrium situations examined

. : . by time-dependent differential equations, since phase errors
_ In all the examples discussed we saw that a piecewisgi accumulate with time and may matter quite a bit. Nev-
linear emulation of a nonlinear Scliager differential  griheless, the piecewise linear emulation we presented can
equation can give a very accurate analytic expression for thgaye a ubiquitous presence, since it can deal with very many
ground state, even when the emulator curve is just a bicuspifonlinear problems, especially static ones. The resulting ana-
one. There are cases, of course, when the emulation Wiljtic expressions can provide a very useful handle in dealing
have to involve more pieces. These are the cases with high@jith such problems. The expression of E#j9) for the vor-
states or with nonlinearities consisting of multiple and pos-+tex is a good example of a very good approximation for a
sibly more complicated terms. The basic criterion is alwayscurve that is accessible only through variational or numerical
whether the graph of the piecewise linear approximation is avork.

Finally, Fig. 8 shows a comparison of the exact numerical
solution to the approximate analytic solution given by the
piecewise linear emulation in three dimensioms=@3), for
E=10. We see that the approximation again reproduces ve
closely the numerical result.
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