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Piecewise linear emulator of the nonlinear Schro¨dinger equation and the resulting analytic
solutions for Bose-Einstein condensates

Stavros Theodorakis*
Physics Department, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus

~Received 29 January 2003; published 9 June 2003!

We emulate the cubic termC3 in the nonlinear Schro¨dinger equation by a piecewise linear term, thus
reducing the problem to a set of uncoupled linear inhomogeneous differential equations. The resulting analytic
expressions constitute an excellent approximation to the exact solutions, as is explicitly shown in the case of
the kink, the vortex, and ad function trap. Such a piecewise linear emulation can be used for any differential
equation where the only nonlinearity is aC3 one. In particular, it can be used for the nonlinear Schro¨dinger
equation in the presence of harmonic traps, giving analytic Bose-Einstein condensate solutions that reproduce
very accurately the numerically calculated ones in one, two, and three dimensions.
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I. THE PIECEWISE LINEAR EMULATION

The discovery of Bose-Einstein condensates in vapor
alkali-metal atoms has prompted an increased interest in
cubic nonlinear Schro¨dinger equation. Indeed, the Gros
Pitaevskii equation, a highly successful three-dimensio
mean field approximation that yields the macroscopic w
function for the gaseous Bose-Einstein condensates, is ju
cubic nonlinear Schro¨dinger equation in a trapping potentia
Nonlinear Schro¨dinger equations model many natural ph
nomena, ranging from light pulses in optical fibers to Bo
condensed photons. It is the trapping potential term, thou
that has led to recent theoretical and mathematical inves
tions. Most of these investigations have focused on harmo
traps, which do not give analytic solutions, and have the
fore consisted of numerical studies. Analytic solutions ha
been obtained for a finite square well@1#, a double square
well @2#, an infinite square well@3#, and ad function poten-
tial @4#. The other potentials have been examined throu
variational and numerical methods. It would be desirab
therefore, to be able to obtain analytic solutions for the
other potentials, even approximate ones. Such solut
would involve special functions in many cases, an unavo
able complication arising even when solving the line
Schrödinger equation. Nonetheless, they would provide
invaluable tool for studying the corresponding nonlinear p
nomena.

In this paper we present a most general method for find
very good analytic approximate solutions to the cubic n
linear Schro¨dinger equation. This method applies whenev
the nonlinearity in that equation is a purely cubic one. It
most easily used when finding condensate ground state
can be easily generalized though to higher states. It is
quite straightforward to generalize it so that it can han
nonlinear terms of any form.

The basic idea is to emulate the nonlinearC3 term by a
piecewise linear function ofC, thus replacing the nonlinea
Schrödinger equation by a set of linear inhomogeneous
ferential equations. These can be solved exactly, provided
are able to find a partial solution. This is possible in quite
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few instances, as shown in the various examples prese
below.

We should note that the idea of solving nonlinear boun
ary value problems by approximating terms of the differe
tial equation and then patching local solutions at the kn
has been used for finding numerical solutions to a numbe
boundary value problems@5#. Here, though, we focus on
obtaining good analytic approximate solutions, rather th
numerical ones.

Our piecewise linear emulation of the nonlinear Sch¨-
dinger equation involves then the replacement of the ph
cally relevant piece of the cubicC3 curve with a correspond
ing circumscribed polygonal line, as shown in Fig.
Clearly, if this polygon consists of very many line segmen
all of them tangent to the cubic curve, then the solution t
will be obtained will be essentially the exact solution of t
nonlinear problem. In practice, though, we shall replace
cubic curve by three line segments tangent to the curve.
resulting trilinear bicuspid curve is in fact a quite dece
emulation of theC3 curve, as seen in Fig. 1.

Indeed, let us suppose that we are trying to find
ground state for a particular nonlinear Schro¨dinger equation
in a certain trapping potential. Then we expect the wa
function to tend to zero at infinity and to reach a maximu
value C0 at a point that can be defined to be the originx
50. We shall now approximate the curveC3 with an emu-

FIG. 1. The functionC3 and its piecewise linear emulatorf em.
The line segments are tangent to the curve at the pointsC50, C
5sC0, andC5C0, wheres5(A521)/2.
©2003 The American Physical Society01-1
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STAVROS THEODORAKIS PHYSICAL REVIEW E67, 066701 ~2003!
lator curve consisting of three straight line segments. Th
line segments will be tangent to theC3 curve at the points
C50, C5sC0, andC5C0. In other words, we shall be
replacing the cubic term with the emulator functionf em,
where

f em5H 0 if 0<C<C1 ,

3s2C0
2C22s3C0

3 if C1<C<C2 ,

3C0
2C22C0

3 if C2<C<C0 .

~1!

Heres is a number between 0 and 1, while the two cusps
the emulator function occur atC152sC0/3 and C2
52C0(12s3)/(323s2).

The parameters is chosen so as to make the emulator
similar as possible to the original. We thus select the valu
s that minimizes the area between the cubic curve and
emulator polygonal line. This particular value turns out to
s5(A521)/2, in which case we getC152sC0/3 andC2
54sC0/3. Our emulator function is then fully specified an
is indeed a very good simulacrum of the cubic curve, as s
in Fig. 1. It is this emulator functionf em of Eq. ~1! that will
be used in all of the following examples.

II. A ONE-DIMENSIONAL d FUNCTION TRAP

We shall demonstrate the validity of our piecewise line
emulation by looking at various examples. We start by so
ing the nonlinear Schro¨dinger equation for the case of ad
function trap:

2
\2

2m

d2C

dx2
2ld~x!C1guCu2C5EC, ~2!

where l and g are positive. We measureC in units of
(l/\)A2m/g andx in units of \2/(2ml), defining also the
positive parameterb52\2E(2ml2)21. The resulting di-
mensionless equation is

d2C

dx2
1d~x!C2C32bC50. ~3!

Hereb is an externally given parameter. It can be fully d
termined if we require the particle number, which is prop
tional to the integral of the square ofC, to have a particular
assigned value.

It is quite straightforward to find the ground state for th
dimensionless equation. The exact ground state is foun
be

C5A2b cosechS uxuAb1sinh21A 4b

124b D , ~4!

whereby the maximum valueC0 of the wave functionC is

C05A~124b!/250.707A124b. ~5!

Let us now see if our emulator can reproduce this grou
state solution. Thus we shall replace the cubic term in Eq.~3!
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with the emulator termf em of Eq. ~1!. We shall be solving
the ordinary differential equation

d2C

dx2
1d~x!C2 f em2bC50, ~6!

the components of which are simply linear inhomogene
ordinary differential equations. Each component must
solved in the corresponding interval, of course. Let us de
the positive valuesx1 and x2, which are such thatC(x1)
5C152sC0/3, C(x2)5C254sC0/3, and C(0)5C0.
Then f em is equal to zero whenuxu>x1, to 3s2C0

2C
22s3C0

3 when x2<uxu<x1, and to 3C0
2C22C0

3 when 0
<uxu<x2.

We solve Eq.~6! in each of the three intervals of th
positivex axis, i.e.,@0,x2#, @x2 ,x1#, and@x1 ,`), making use
of the fact that it suffices to find the ground state wave fu
tion just for non-negative values ofx, sinceC is even. Our
solution involves nine unknown constants, namely,C0 , x1 ,
x2, and six constants of integration~two in each of the three
regions!. We shall impose the conditions that the wave fun
tion and its derivative be continuous atx1 andx2 ~four con-
ditions!, that the wave function have the aforementioned
propriate values at the origin and at the pointsx1 and x2
~three conditions!, that the derivative of the wave functio
have the appropriate discontinuity at the origin~one condi-
tion!, and that the wave function vanish at infinity~one con-
dition!. There are thus nine equations and nine unknown c
stants. It is then quite straightforward to determine fully t
solution of Eq.~6!. We find from this piecewise linear emu
lation that the maximum valueC0 of the wave functionC is

C05A~124b!A30A5163

236
50.742A124b. ~7!

This approximate result is very close to the exact result
Eq. ~5!, as can be seen in Fig. 2, where the maximum va
of the wave function is plotted as a function of the parame
b.

The solution obtained from the piecewise linear emulat
is

FIG. 2. The maximum valueC0 of the wave function as a
function of b in a d trapping potential. The continuous curve co
responds to the exact solution, while the dashed curve corresp
to the piecewise linear emulation.
1-2



C5

C1e2Ab(x2x1) if x1<x,

2s3C0
3

k2
1S C22

2s3C0
3

k2 D cosh@k~x2x2!#1~Gd/k!sinh@k~x2x2!# if x2<x<x1 ,

3

~8!
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where d253C0
21b, k253s2C0

21b, g5C22(2C0
3/d2),

and G522sC0Ak213b/(3d). The pointsx1 and x2 are
given by the relations

sinh@k~x12x2!#5
k

k22b
S k21b

Ab
2A3b1k2D ~9!

and

sinh~dx2!5
1

g22G2
@gC0 /~2d!1G„C02~2C0

3/d2!…#.

~10!

Figure 3 shows the expression of Eq.~8!, obtained from the
piecewise linear emulation, as well as the exact ground s
solution given by Eq.~4!. We see that the two curves coin
cide. Thus the piecewise linear emulation does indeed
ceed in providing us with a very accurate analytic appro
mation for the wave function of the ground state in t
nonlinear Schro¨dinger equation with ad function trapping
potential.

III. THE KINK

Let us now demonstrate the validity of the piecewise l
ear emulation in a different context, namely, the domain w
between two equivalent phases. This domain wall is usu
called a kink soliton.

FIG. 3. The wave function for the ground state in ad function
trap, forb51/8. The continuous line shows the exact result, wh
the dashed line shows the result given by the piecewise linear e
lation.
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We shall examine, in particular, the solution of the diffe
ential equation

d2C

dx2
2C31C50, ~11!

subject to the boundary conditionsC(6`)561. The kink
that joins two equivalent homogeneous solutions of Eq.~11!,
the solutions 1 and21, can be found exactly:

C5tanh~x/A2!. ~12!

Let us see if we can reproduce this solution through a pie
wise linear emulation. We may confine our attention to t
positivex axis, since the kink will be an odd function. Thu
the kink will have the value zero atx50 and 1 at infinity. We
emulate Eq.~11!, then, by replacing the cubicC3 term with
the termf em of Eq. ~1!, the maximumC0 of the wave func-
tion being 1 in the present case. Thus the emulatorC is
going to be the solution of

d2C

dx2
2 f em1C50, ~13!

where the emulator functionf em in this case is

f em5H 0 if 0<x<x1 ,

3s2C22s3 if x1<x<x2 ,

3C22 if x2<x,

~14!

where the pointsx1 and x2 are defined by the expression
C(x1)52s/3 and C(x2)54s/3, s being always equal to
(A521)/2. There are eight unknown constants, namely,x1 ,
x2, and the six integration constants, two constants in eac
the three regions that partition the positivex axis. These
constants will be determined by the eight boundary con
tions that have to be imposed. Indeed, we shall impose
conditions that the wave function and its derivative be co
tinuous atx1 andx2 ~four conditions!, that the wave function
take the values 0, 2s/3, and 4s/3, at the points 0,x1, andx2,
respectively~three conditions!, and that the wave function
take the value 1 at infinity~one condition!. There are thus
eight equations and eight unknown constants. It is now
straightforward matter to solve exactly the resulting eq
tions, obtaining
u-
1-3



C55
11S 4s

3
21DeA2(x22x) if x2<x ,

2s3

3s221
21.5317e(x22x)p20.8803e(x2x2)p if x1<x<x2 , ~15!

STAVROS THEODORAKIS PHYSICAL REVIEW E67, 066701 ~2003!
2s

3

sinx

sinx1
if 0<x<x1 ,
in
-

su
xi

hu
os
ti-
a

b
in
m

-
ve
f

on.
ite

e
ith

ight
f
ns
ve

ing
e

wherep5A3s221, andx1 andx2 turn out to be 0.5912 and
1.5574, respectively.

Figure 4 shows the expression for Eq.~15!, obtained from
the piecewise linear emulation, as well as the exact k
solution given by Eq.~12!. We see that the two curves coin
cide. Thus the piecewise linear emulation does indeed
ceed in providing us with a very accurate analytic appro
mation for the kink solution of Eq.~11!.

IV. THE VORTEX

The previous two cases could be solved analytically, t
making the piecewise linear emulation superfluous. M
nonlinear Schro¨dinger problems cannot be solved analy
cally though, and it is in these cases that our method m
prove to be invaluable.

An example of such a nonlinear problem that can
solved only numerically is the problem of a single vortex
a superfluid medium. The numerical solution of this proble
is known @6#. The corresponding nonlinear Schro¨dinger
equation is a two-dimensional differential equation:

2
\2

2m
¹2C1buCu2C2aC50. ~16!

For a vortex solution with a single quantum of circulation,C
takes the formc(r)eif, wherer is the two-dimensional ra
dius andf is the azimuthal angle. If we measure the wa
function in units of Aa/b and the radius in units o
A\2/(2ma), we obtain the ordinary differential equation
th
e

06670
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d2c

dr2
1

1

r

dc

dr
2

1

r2
c2c31c50. ~17!

We cannot obtain an exact analytic solution of this equati
It is in this case then that our method may prove to be qu
useful.

We note first thatc can take values between 0 atr50
and 1 at infinity. So we shall replace the cubic termc3 in Eq.
~17! with the emulator term

f em5H 0 if 0<r<r1 ,

3s2c22s3 if r1<r<r2 ,

3c22 if r2<r,

~18!

wherer1 and r2 are defined by the equationsc(r1)52s/3
andc(r2)54s/3. It is then a straightforward matter to solv
the resulting equations analytically, since we are dealing w
linear inhomogeneous differential equations. There are e
unknown constants, namely,r1 , r2, and six constants o
integration, two in each of the three regions. The conditio
that must be imposed arise from the continuity of the wa
function and its derivative atr1 andr2 ~four conditions!, as
well as from the fact thatc takes the values 0, 2s/3, 4s/3,
and 1 at 0,r1 , r2, and infinity, respectively~four condi-
tions!. Thus all the unknown constants can be found, lead
to an expression that involves Bessel functions and StruvL
functions:
c55
p

2
@ I 1~rA2!2L1~rA2!#20.641 326K1~rA2! if r2<r,

2ps3p2L1~r/p!13.620 77I 1~r/p!20.002 632 45K1~r/p! if r1<r<r2 ,

1.221 15J1~r! if 0<r<r1 ,

~19!
where p5(31A5)/2, r150.720 578, andr251.9686. We
can now use this approximation for the wave function of
vortex in order to calculate its energy. This energy is giv
by the expression
e
n

E
0

R

p dr~rc821c2/r1rc4/22rc2!. ~20!

If we use the approximation of Eq.~19! in order to calculate
1-4
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this energy, we shall findp ln(1.47R)2pR2/4. The energy
obtained by solving the nonlinear Schro¨dinger equation~17!
numerically @6# is identical to this, except for the numbe
1.47 being replaced by the number 1.46. The agreemen
tween the two expressions is consequently excellent. T
can also be seen in the plot of Fig. 5, where the wave fu
tion found by numerically solving the correct Eq.~17! coin-
cides perfectly with the wave function of Eq.~19! that was
obtained through the piecewise linear emulation. We c
clude then that our emulation produces an excellent ana
simulacrum of the numerical solution.

V. THE n-DIMENSIONAL ISOTROPIC
HARMONIC OSCILLATOR

In all the cases that were examined so far it was a r
tively straightforward matter to solve exactly the linear inh
mogeneous differential equations that resulted from
piecewise linear emulation. It will not always be easy to
that though, because there may be cases where a parti
solution is hard to find. An additional difficulty will arise
from the fact that the general solutions of the correspond
homogeneous differential equations may involve com
cated special functions, in which case some symbolic co
putations may be necessary. In all cases, though, our em
tion will provide us with a very good approximation for th
functional form of the exact solution.

A good example of a nontrivial application of our metho
is the n-dimensional nonlinear Schro¨dinger equation in the
presence of an isotropic harmonic trapping potential. Thi
the case relevant to the Bose-Einstein condensates. The
functions for these condensates have been found only
merically @7–9#. We shall use the piecewise linear emulati
in order to find analytic expressions for these solutions.

We shall be looking at the nonlinear Schrodinger equat

2
\2

2m
¹2C1

1

2
mv2r 2C1guCu2C5EC, ~21!

whereg is positive~repulsive case!. We shall concentrate on
real ground state condensates and we shall measureC in
units ofA\v/(2g), r in units ofA\/(mv), andE in units of
\v/2. Then Eq.~21! reduces to the dimensionless equatio

FIG. 4. The kink solution of Eq.~11!. The continuous line
shows the exact result of Eq.~12!, while the dashed line shows th
result given by the piecewise linear emulation.
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d2C

dr2
1

n21

r

dC

dr
2r 2C2C31EC50, ~22!

wheren is the dimension of the space and hence may t
the values 1, 2, or 3.

We now proceed to the piecewise linear emulation of E
~22!, replacing the cubicC3 term by the emulatorf em given
by Eq. ~1!. We then have to solve the linear inhomogeneo
equations

d2C

dr2
1

n21

r

dC

dr
2r 2C2 f em1EC50. ~23!

We define the pointsr 1 and r 2, so that C(r 1)52sC0/3
5C1 , C(r 2)54sC0/35C2, and C(0)5C0, the param-
eters having its standard values5(A521)/2. Then Eq.~23!
involves six unknown constants of integration~two in each
one of the three regions! and three additional unknown pa
rameters (C0 , r 1, and r 2). These constants will be dete
mined by the nine boundary conditions. Four conditions ar
from the continuity of the wave function and its derivative
r 1 andr 2, two conditions arise atr 50 from the fact that the
wave function acquires the maximum valueC0 there, one
condition arises from the fact thatC vanishes at infinity, and
the last two conditions arise from the relationsC(r 1)
52sC0/3 andC(r 2)54sC0/3.

The solution of Eq.~23! in the region r 1<r is quite
straightforward and is expressed in terms of the hyperg
metric functionU,

C5
2sC0

3
e(r 1

2
2r 2)/2

U„~n2E!/4,n/2,r 2
…

U„~n2E!/4,n/2,r 1
2
…

, ~24!

having made use of the boundary condition at infinity and
the known valueC(r 1). The solutions in the other two re
gions are quite nontrivial, since a particular solution is n
immediately obvious.

Let us begin with the inner region (0<r<r 2), where the
wave function takes values between 4sC0/3 and C0. The
equation that has to be solved here is

FIG. 5. The vortex solution of Eq.~17!. The continuous line
shows the exact numerical result, while the dashed line shows
result of Eq.~19! that was given by the piecewise linear emulatio
1-5



a
n

.
un
th
s

on
o-
lu
n
ea
-

w

l
us

n-

u-

ed
la-

of
-

ed
la-

b-

line
.

STAVROS THEODORAKIS PHYSICAL REVIEW E67, 066701 ~2003!
d2C

dr2
1

n21

r

dC

dr
2r 2C2h2C12C0

350, ~25!

with h253C0
22E. The solutions of the homogeneous equ

tion are expressed in terms of hypergeometric functio
e2r 2/2

1F1„(n1h2)/4,n/2,r 2
… ande2r 2/2U„(n1h2)/4,n/2,r 2

….
However, the hypergeometricU piece diverges atr 50 when
n52 or 3, and gives a finite nonzero slope there whenn
51, making it impossible forC to have its maximum there
The U piece must be excluded therefore, since the gro
state has to be even about the origin. We are left with
other hypergeometric piece, the piece containing the
called Kummer function. Thus we know the general soluti

We need, however, a particular solution of the full inh
mogeneous equation in order to obtain the full analytic so
tion. Such a solution is not immediately obvious. We can fi
it, though, if we concentrate our attention on the nonlin
region, where we expect largeC0 values. Indeed, let us de
fine the variablew51/(r 21h2). For large values ofC0 this
is small everywhere and we shall be able to write do
convergent series in terms of this variable. In fact, Eq.~25!
can be rewritten in the form

~4w424h2w5!
d2C

dw2
1@~822n!w328h2w4#

dC

dw
2C

12wC0
350. ~26!

The solution of this equation for smallw is

f in52C0
3@w1~822n!w328h2w4#1O~w5!. ~27!

This relation indicates that for smallw, when we may keep
only the term of orderw, we have to haveC0

2'E, sinceC
acquires the valueC0 at the origin.

Equation ~27! is a partial solution of Eq.~25!, the full
solution of which now takes the form

C5f in~r !1S 4sC0

3
2f in~r 2! D

3e(r 2
2
2r 2)/2 1F1„~n1h2!/4,n/2,r 2

…

1F1„~n1h2!/4,n/2,r 2
2
…

. ~28!

We can use a similar approach for the regionr 2<r<r 1 in
the middle. The equation that must be solved here is

d2C

dr2
1

n21

r

dC

dr
2r 2C2 j 2C12s3C0

350, ~29!

where j 253s2C0
22E. For largeC0 an approximate partia

solution can be obtained in the same manner as the one
in the inner region. This partial solution is

fmid52s3C0
3@y1~822n!y328 j 2y4#, ~30!

wherey51/(r 21 j 2). The full solution in this region turns
out to be
06670
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C5fmid~r !1Ae2r 2/2
1F1„~n1 j 2!/4,n/2,r 2

…1Be2r 2/2U„~n

1 j 2!/4,n/2,r 2
…. ~31!

The constantsA andB can be found by requiringC to take
the appropriate values at the pointsr 1 and r 2. Hence A
5A1 /C andB5B1 /C, where

A15er 2
2/2@2fmid~r 2!1~4s/3!C0#U„~n1 j 2!/4,n/2,r 1

2
…

2er 1
2/2@2fmid~r 1!1~2s/3!C0#U„~n1 j 2!/4,n/2,r 2

2
…,

~32!

B15er 1
2/2@2fmid~r 1!1~2s/3!C0# 1F1„~n1 j 2!/4,n/2,r 2

2
…

2er 2
2
@2fmid~r 2!1~4s/3!C0#) 1F1„~n1 j 2!/4,n/2,r 1

2
…,

~33!

and

C5 1F1„~n1 j 2!/4,n/2,r 2
2
…U„~n1 j 2!/4,n/2,r 1

2
…

2 1F1„~n1 j 2!/4,n/2,r 1
2
…U„~n1 j 2!/4,n/2,r 2

2
…. ~34!

Equations~24!, ~28!, and ~31! describe fully the solution
given by the piecewise linear emulation. The remaining u
known quantities (r 1 , r 2, and C0) will be determined by
requiring that the derivative of the wave function be contin
ous atr 1 and r 2, and thatC(0)5C0. Of course, our solu-
tion will be a function of the input parameterE, which is
determined by the total number of particles.

Figure 6 shows a comparison of the numerically obtain
solution to the solution given by the piecewise linear emu
tion in one dimension (n51), for E510, a value ofE that is
large enough to ensure the validity of the partial solutions
Eq. ~27! and Eq.~30!. We see that our approximation repro
duces very closely the numerically obtained exact result.

Figure 7 shows a comparison of the numerically obtain
solution to the solution given by the piecewise linear emu
tion in two dimensions (n52), for E510. We see that the
approximation reproduces very closely the numerically o
tained exact result.

FIG. 6. The solution of Eq.~22! for n51 andE510. The con-
tinuous line shows the exact numerical result, while the dashed
shows the result that is given by the piecewise linear emulation
1-6
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Finally, Fig. 8 shows a comparison of the exact numeri
solution to the approximate analytic solution given by t
piecewise linear emulation in three dimensions (n53), for
E510. We see that the approximation again reproduces v
closely the numerical result.

VI. CONCLUSIONS

In all the examples discussed we saw that a piecew
linear emulation of a nonlinear Schro¨dinger differential
equation can give a very accurate analytic expression for
ground state, even when the emulator curve is just a bicu
one. There are cases, of course, when the emulation
have to involve more pieces. These are the cases with hi
states or with nonlinearities consisting of multiple and p
sibly more complicated terms. The basic criterion is alwa
whether the graph of the piecewise linear approximation

FIG. 7. The solution of Eq.~22! for n52 andE510. The con-
tinuous line shows the exact numerical result, while the dashed
shows the result that is given by the piecewise linear emulation
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satisfactory simulacrum of the graph of the original nonl
ear terms. This will always be the case if the emulator c
sists of enough linear segments. With the cubic term th
segments are quite sufficient. More complicated nonlin
terms will need an emulator with more than two cusps a
more than three pieces. Furthermore, while our approxim
scheme should work quite well for static situations, it m
not work in the case of nonequilibrium situations examin
by time-dependent differential equations, since phase er
will accumulate with time and may matter quite a bit. Ne
ertheless, the piecewise linear emulation we presented
have a ubiquitous presence, since it can deal with very m
nonlinear problems, especially static ones. The resulting a
lytic expressions can provide a very useful handle in dea
with such problems. The expression of Eq.~19! for the vor-
tex is a good example of a very good approximation fo
curve that is accessible only through variational or numer
work.

e
FIG. 8. The solution of Eq.~22! for n53 andE510. The con-

tinuous line shows the exact numerical result, while the dashed
shows the result from the piecewise linear emulation.
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